tensor$82327$ - definizione. Che cos'è tensor$82327$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è tensor$82327$ - definizione

UNIVERSAL CONSTRUCTION IN MULTILINEAR ALGEBRA
Tensor power; Tensor coalgebra; Tensor ring; Tensor-algebra bundle

Tensor density         
GENERALIZATION OF TENSOR FIELDS
Relative tensor; Tensor densities; Vector density
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value.
Tensor product of modules         
  • right
OPERATION THAT PAIRS A LEFT AND A RIGHT 𝑅‐MODULE INTO AN ABELIAN GROUP
Tensor product of modules over a ring; Exterior bundle; Relative tensor product; Tensor product of abelian groups; Balanced product; Trace map; Tensor product of complexes
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g.
Tensor veli palatini muscle         
MUSCLE OF THE SOFT PALATE
Tensor veli palatini; Tensor palati muscle; Tensor Veli Palatini; Tensor palati; Musculus tensor veli palatini; Tensor veli palatini muscles; Tensor palatine
The tensor veli palatini muscle (tensor palati or tensor muscle of the velum palatinum) is a broad, thin, ribbon-like muscle in the head that tenses the soft palate.

Wikipedia

Tensor algebra

In mathematics, the tensor algebra of a vector space V, denoted T(V) or T(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).

The tensor algebra is important because many other algebras arise as quotient algebras of T(V). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras.

The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure.

Note: In this article, all algebras are assumed to be unital and associative. The unit is explicitly required to define the coproduct.